TEMAS VISTOS EN CLASE

SISTEMA BINARIO:
El sistema binario, llamado también sistema diádico​ en ciencias de la computación, es un sistema de numeración en el que los números se representan utilizando solamente dos cifrascero y uno (0 y 1). Es uno de los sistemas que se utilizan en las computadoras, debido a que estas trabajan internamente con dos niveles de voltaje, por lo cual su sistema de numeración natural es el sistema binario.

ADICIÓN DE NÚMEROS BINARIOS:

La tabla de sumar para números binarios es la siguiente:
  +  0  1
  0  0  1
  1  110
Las posibles combinaciones al sumar dos bits son:
  • 0 + 0 = 0
  • 0 + 1 = 1
  • 1 + 0 = 1
  • 1 + 1 = 10
Note que al sumar 1 + 1 es 102, es decir, llevamos 1 a la siguiente posición de la izquierda (acarreo). Esto es equivalente en el sistema decimal a sumar 9 + 1, que da 10: cero en la posición que estamos sumando y un 1 de acarreo a la siguiente posición.
Ejemplo
        1
      10011000
    + 00010101
    ———————————
      10101101

SUSTRACCIÓN DE NÚMEROS BINARIOS:

El algoritmo de la resta en sistema binario es el mismo que en el sistema decimal. Pero conviene repasar la operación de restar en decimal para comprender la operación binaria, que es más sencilla. Los términos que intervienen en la resta se llaman minuendo, sustraendo y diferencia.
Las restas básicas 0 - 0, 1 - 0 y 1 - 1 son evidentes:
  • 0 - 0 = 0
  • 1 - 0 = 1
  • 1 - 1 = 0
  • 0 - 1 = 1 (se transforma en 10 - 1 = 1) (en sistema decimal equivale a 2 - 1 = 1)
La resta 0 - 1 se resuelve igual que en el sistema decimal, tomando una unidad prestada de la posición siguiente: 0 - 1 = 1 y me llevo 1 (este valor se resta al resultado que obtenga, entre el minuendo y el sustraendo de la siguiente columna), lo que equivale a decir en el sistema decimal, 2 - 1 = 1.
Ejemplos

        10001                           11011001    
       -01010                          -10101011
       ——————                          —————————
        00111                           00101110

PRODUCTO DE NÚMEROS BINARIOS:

La tabla de multiplicar para números binarios es la siguiente:
  ·  0  1
  0  0  0
  1  0  1
El algoritmo del producto en binario es igual que en números decimales; aunque se lleva a cabo con más sencillez, ya que el 0 multiplicado por cualquier número da 0, y el 1 es el elemento neutro del producto.
Por ejemplo, multipliquemos 10110 por 1001:
        10110       
       x 1001                    
    —————————          
        10110               
       00000                
      00000                
     10110                
    —————————           
     11000110

DIVISIÓN DE NÚMEROS BINARIOS:

La división en binario es similar a la decimal; la única diferencia es que a la hora de hacer las restas, dentro de la división, estas deben ser realizadas en binario.
Ejemplo
Dividir 100010010 (274) entre 1101 (13):
100010010 /1101 = 010101
 -0000       
———————
 10001
 -1101
———————
  01000
 - 0000
 ———————
   10000
  - 1101
  ———————
    00111
   - 0000
   ———————
     01110
    - 1101
    ———————
     00001

CONVERSIÓN ENTRE BINARIO Y DECIMAL:Se divide el número del sistema decimal entre 2, cuyo resultado entero se vuelve a dividir entre 2, y así sucesivamente hasta que el dividendo sea menor que el divisor, 2. Es decir, cuando el número a dividir sea 1 finaliza la división.
A continuación se ordenan los restos empezando desde el último al primero, simplemente se colocan en orden inverso a como aparecen en la división, se les da la vuelta. Este será el número binario que buscamos.

SISTEMA BINARIO A OCTAL:

Debido a que el sistema octal tiene como base 8, que es la tercera potencia de 2, y que dos es la base del sistema binario, es posible establecer un método directo para convertir de la base dos a la base ocho, sin tener que convertir de binario a decimal y luego de decimal a octal. Este método se describe a continuación:
Para realizar la conversión de binario a octal, realice lo siguiente:
1) Agrupe la cantidad binaria en grupos de 3 en 3 iniciando por el lado derecho. Si al terminar de agrupar no completa 3 dígitos, entonces agregue ceros a la izquierda.
2) Posteriormente vea el valor que corresponde de acuerdo a la tabla:
Número en binario000001010011100101110111
Número en octal01234567
3) La cantidad correspondiente en octal se agrupa de izquierda a derecha.

BINARIO A EXADECIMAL:

Para realizar la conversión de binario a hexadecimal, realice lo siguiente:
1) Agrupe la cantidad binaria en grupos de 4 en 4 iniciando por el lado derecho. Si al terminar de agrupar no completa 4 dígitos, entonces agregue ceros a la izquierda.
2) Posteriormente vea el valor que corresponde de acuerdo a la tabla:
Número en binario0000000100100011010001010110011110001001101010111100110111101111
Número en hexadecimal0123456789ABCDEF
3) La cantidad correspondiente en hexadecimal se agrupa de derecha a izquierda.

TABLA DE CONVERSIÓN: 
DecimalBinarioHexadecimalOctalBCDExceso 3Gray o Reflejado
0000000000000110000
1000111000101000001
2001022001001010011
3001133001101100010
4010044010001110110
5010155010110000111
6011066011010010101
7011177011110100100
81000810100010111100
91001911100111001101
101010A120001 00001111
111011B130001 00011110
121100C140001 00101010
131101D150001 00111011
141110E160001 01001001
151111F170001 01011000








Comentarios

Entradas populares